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SYMBOLS USED

tg-gas temperature (surrounding medium), °C (tg = tp)
ts—temperature of surface of blade at given point, °C

t .- temperature of cooling medium, °C

«-heat transfer coefficient from gas to external blade surface,

kcal/m2 °C-hr
a'-heat transfer coefficient from internal surface of blade to cooling

. medium, kcal/mz-hr °C 5
A-coefficient of heat conductivity of blade material, kcal/m“:hr °C
n-external normal to blade contour
at
gﬁi-value of temperature gradient at blade contour

dF.element of surface through which elementary quantity of heat dQ is
transmitted

tis-temperature of i-th point on contour

ri~distance from i-th point on contour to a certain point M
cos(ri,n)-cosine of angle between ray from point M to i-th point of

contour, and external normal to contour at this point
S-length of contour
SO-external contour of blade

Sl,...,S6ainterna1 contours of six cooling channels

@ (x,y)-value of heat transfer coefficient from gas to blade, variable
over contour

EEERRFL -coefficients of heat transfer from walls of internal channels

to cooling medium
Q-total quantity of heat applied to blade
q-density of heat flux
I-electric current
i-density of electric current
u-electrical potential
0 = 1/p-coefficient of electrical conductivity of material of model
blade (0 is the specific resistance of the electrically conductive paper)
L-~linear dimension
A-coefficient of thermal conductivity of original blade
a-~coefficient of heat transfer
Re~e1ectrica1 resistance

Fe = 1i5—10c31 electrical model cross-section

8 = const-thickness of electrically conductive paper
1i~1ength of sector of contour of model blade cross-section
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OF A HIGH-TEMPERATURE GAS TURBINE DURING INTERNAL COOLING

L. M. Zysina-Molozhen and M. P. Polyak
Central Boiler-lurbine Institute imeni I.I.Polzunov

ABSTRACT. Calculation of the temperature fields in a
cross-section of a gas turbine blade with an internally
flowing coolant. The problem consists of calculating the
temperature fields within the body of a blade of arbitrary
shape and with an arbitrary number of internal cooling
channels during variation of the local heat-transfer coeffi-
cients along the blade contour. The results make possible
an evaluation of the effectiveness of the cooling system in
terms of the optimum distribution of the cooling channels.
The solution is based on determining the temperature function
which corresponds to a Laplace equation with certain bound-
ary conditions. The calculation was performed on a digital
computer, and the method of programming is described in
detail.

One of the most heavily loaded elements of a gas turbine is the moving
blade. Therefore, the problem of provision of effective cooling of moving
blades in gas turbines is one of the most important problems to be solved in
the production of high temperature gas turbines.

One of the most promising systems for cooling blades is the system of
internal cooling using an intermediate heat transfer agent moving through
internal cooling channels in the blades. From the mathematical point of view,
the problem of the temperature field in such a blade is a complex spatial
problem of stationary heat transfer with variable boundary conditions along
the contour and height of the blade. This problem has not yet been theoretic-
ally solved due to the great mathematical difficulties involved. The solution
of a simpler problem, that of determining the temperature field in cross-
sections of cooled blade profiles, is also of great interest for turbine
construction,

The solution of this problem for cylindrical blades allows us to determine
the temperature field throughout the entire fin of the blade; for curved
blades, using the method of cylindrical cross-sections, we can use this
solution to determine the temperature field in various cross-sections through

1 Numbers in the margin indicate pagination in the foreign text.




the height of the blade.

In blades with internal cooling, the temperature gradients in the
cross-section of the profile may reach several hundred degrees, and this
phenomenon cannot be ignored. In order to increase the reliability of the
operation of such blades, it is necessary that a reduction in the temperature
gradients in the cross-section of the profile be produced by proper selection
of the location, number, form and size of cooling channels.

In experimental investigations of heat transfer of turbine blades, the
average coefficients of heat transfer have been primarily studied. these
coefficients can be used, for example, to estimate heat transfer to the turbine
rotor. In planning a blade cooling system, however, it is extremely important /262
to have the ability to calculate heat transfer and temperature fields within
the body of the cooled blade in consideration of the inconstant nature of local
heat transfer through the lateral surface, since the nature of the flow of the
gas in the interblade channel of the turbine results in quite essential
differences in the intensities of heat transfer through various sectors of the
surface past which the gas stream flows. A cooling system planned without
knowledge of the distribution of temperatures through the body of a blade may
increase the unevenness of temperature within the blade and, consequently,
reduce its mechanical strength.

At the present time it has become quite possible to calculate the thermal
effectiveness of any network of profiles on the basis of calculations of
conditions in the boundary layer developing along the contour of the profiles
around which the fluid flows. The method of determining the coefficients of
heat transfer based on calculation of the boundary layer [1] takes better
consideration of the physical aspect of the process. Since this method has
been programmed for the high speed "Ural-1'" electronic computer, the performance
of a series of calculations of local and average values of heat transfer
coefficients for various networks of profiles represents no particular diffi-
culty, being an operation requiring only a few minutes.

The problem of determination of the temperature field within a hollow
turbine blade of arbitrary form, around which a gas flows, where the third
order boundary conditions are fixed for the external and internal contours,
has been solved by O. I. Golub'yeva [2] on the assumption that the heat transfer
coefficients from the gas to the external surface are constant throughout the
contour. We used the method developed in [2] to solve the more complex
problem of the temperature field within a blade of arbitrary form with
arbitrary number of internal cooling channels of any form considering
variability of local heat transfer coefficients over the contour. The
practical solution of this problem was possible only by programming the method
for the high speed electronic computer. In the solution of the problem, the
end surfaces of the blade were considered to be insulated.

As a result of this assumption, the temperature values produced are
somewhat elevated, since we did not consider heat transfer to the wheel rim by
conduction. However, the cooling effect of the rim of the wheel is noticeable
only for a slight distance from the rim, particularly for heat resistant



steels, which have low heat conductivity. Also, the inaccuracy produced as a
result of this assumption increases the strength reserve,

The solution of the problem consists of determination of function t
(temperature) satisfying the Laplace equation

at= 2 L ®t _, (1)
T oy

and the following boundary conditions:

1. The elementary quantity of heat supplied by convection from the
surrounding medium to an element of the exterior surface of the blade is equal
to the elementary quantity of heat conducted away from the blade by heat
conduction

ot
dQ=a(t,—-ts)dF=A3:—dF. (2)

2. The elementary quantity of heat transmitted by heat conductivity to an
element of the internal surface of the blade (wall of the internal channel) is

equal to the elementary quantity of heat conducted away from it by convection
of the cooling medium

- ]
dQ=a (ts—t  )dF = —A %df. (3)
_ ¢ dn

In this case, one of the two main boundary problems for the Laplace
equation obtains; the Neuman problem, which is stated as follows: find
function t, harmonic in area D, for which the normal derivative o9t/dn, i.e. the
derivative with respect to the direction of the normal to the contour, has
fixed values over contour S:

o |
(3) e~ v

In this case, the Laplace equation (1) can be reduced to an integral equation

tis':_—l—- [JMdS——\S‘lnri atSi dS]. (5)
2% o on

S
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This equation is produced as a result of a limit transfer from the
corresponding equation for temperature at a certain point within the area
bounded by contour S, using the known properties of the harmonic functions.

We have solved the problem of determining the temperature field in the
cross-section of a blade with six cooling channels (the number of channels is
arbitrary). In this case, the contour through which integration is performed /264
consists of seven parts: the external contour of the blade and six internal -

contours of cooling channels. Equation (5) for conditions (2) and (3) can be
written as follows

2ﬂts:=5t cos (7 )dS ylnr,—a—(fﬂ(tr—-ts)dS-i-
. M (%, y)

r‘ ?
+S Mds—-glnr: (t o] —1ts)dS+
X, 4) ")
+;«..+...+S'tsﬁ’i_(’_f_”’ds_ lnr, —% (¢ —t)dS.
. -~ Se

Integral equation (5) can be solved using the approximate Fredholm
method. This requires that the internal and external contours be divided into
n + m sectors (n sectors on the external contour and m on the internal
contour), in each of which temperature ts is assumed constant and equal to the

average temperature over the entire sector. Equation (5') is made up for each
such sector and, as a result of solution of the system of n + m equations with

n + m unknowns, we find the temperatures tsl’ tsZ’ cees tsn’ ts,n w10

tS n o+ m OVer the profile contour. Of course, the accuracy of the solution
depends on the number of sectors into which the contour is divided. The
integrals for contours SO’Sl""’Sé will be calculated as sums of integrals
for the n + m sectors. Equation (5') then takes on the form

Pnh 4+ @pls +- - (9 —2’?) Lt Pl —

(6)
— Qis, tl' ‘— Qis, t cl — Qis, tC2 ,_ L —(Pisst c6”

where ¢ represents the following coefficients:

on= j_cﬂii"_’i dS-+ S 2 tar,as,
r‘ k u.‘;;i,'

s e o » s e e o 1 e = & e're s

Pin= ywd5+ y& ln-r‘ds,
r A
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— s' cos (r;, n) dS+- 5‘ % Inr,dS,
r A

n'+m ntm

S-—— Inr,dS + S-— InrdS 4----+ j.—— Inr,dS,

Xg %q
= 2 Inr,dS4+... 41 ds.
S‘)‘ Jiao + +\s‘ r nr;

The subscript i means that the temperature is determined for the i-th point on
the contour, while the numbers 1,2,...,n,...,(n + m) indicate the sector for
which the integrals are calculated.

For each sector where tg = const, @ and A are also assumed constant, and
the calculation of the integrils is greatly simplified.

Thus composing the (n + m) equations (for each sector), we produce a
system of linear equations which must be solved in order to determine the

functions tl,t ...,‘cn,...,tn + p OVer the contour:

(Pu—27) i+ Prata + -+ -+ Puaty + Puastlaat---+
+q>x...+mt,.+m Os, b —@is, ) —@is,ly —
—ee—Qis,t c6 =0;
c|’21’+‘(‘P2~—21') tat - T Ponln + Pomprfagr +- -
+ $2, nemlnem — P25, b — 2.5, ¢ cl ™
—(st,t 02— —Qas,t o6 = 0;

(Pnl 4L + P2 t2 4.+ (Ppa— 2“)t + P, ni1 tu-l +
: +‘pn;qmtu+m Pn.So by — Qs fc1  —
—@Qns,t c2 — -—%s.tcs =0;

-------------



Prsmilt + Quimatz - - - + Primaln + Pr+m. ne1 tnfx +
+--- + ((Pn+m. nem — 27) Losm — Prim.Se t,— Pnem, s{‘.l -
—PrimS:iliy — —Qumsidcg =0.

In order to solve this system we must first determine the component coefficients

.

Using the known temperatures on the contour, we can determine the
temperature at any point in the cross-section of the blade:

i
I = on [tp‘. s, + Qats, 4+ Qinimls. nem —

—‘Pls.tr"'(PIS.tcl"" "'—'q)iS.tc6 ] *

The complexity and difficulty of this numerical method of solution are
obvious, and its practical application, considering the variability of @

through the contour and the great volume of computational work required, is
possible only where high speed electronic computers are available.

The method described above was programmed by us for the '""BESM' electronic
computer. The program is designed to determine the temperature at 100 points
on the contour and any number of internal points of the cross-section. The
calculation requires that the following quantities be assigned: coordinates X
and Y of the points of division of the contours (external and internal), the
values of the coefficients of heat transfer at these points, the values of the
coefficient of heat conductivity of the blade material, the gas temperature
and the temperature of the coolant.

The machine time required for a determination of temperature values at
200 points in the cross-section is three hours. Punching of the initial
numerical material requires 30 minutes.

Placement of the initial data on punched cards allows rapid replacement of
individual cards to be performed in case of changes in various input quantities,
i.e. calculation of numerous variants of the problem can be performed in
succession. The results of the solution are printed by a high speed printer
onto strip paper in the form of a column of numbers. For the points on the
contour, the temperature values at the 100 points are printed out in order.

For the internal points, the coordinates (X,Y) of each point and the corre-
sponding temperature value at the point are printed out in order.

We have solved the problem of determining the temperature field in the
body of a blade during intensive cooling by liquid sodium filling six internal
channels. The external contour of the cross-section was divided into




40 sectors (20 on the back edge and 20 on the curved side). Analysis of the
distribution of a_ over the external contour for various blade profiles showed

that the division of the external contour into 40 sectors, over each of which
it is assumed that @ = const, is quite sufficient for reproduction of the true /267
picture of distribution of @ . The program for the method of calculating «

3

to be run on the "Ural-1" computer, also calls for the separation of the
contour into 40 sectors (the values of as are determined at 40 points on the

contour according to the predetermined values of velocity at each point).
Each of the six cooling channels was divided into ten sectors.

Figures 2 and 3 show one of the
distributions of velocities and local heat
transfer coefficients around the contour of

the blade cross-section, produced by
,/”—--\\\\ calculation for this problem. As we see,
= there is an essential unevenness in the
distribution of as. The maximum values are

yi

T attained at the leading and trailing edges
of the blade, the values of a  at the edges

exceeding the values of @ in the central

Figure 1. Graph for com- porFiop of_the blade by a factor of 3 or even
position of heat conduct- 43 indicating that the Plade edge§ @ust
ivity equation withstand the most difficult conditions as
) concerns temperatures, and therefore need
more intensive cooling. One distribution of
the temperatures in the cross-section of the
blade produced by calculation using our program on the '"BESM' computer for
tg = 1200°C, t, = 500°C and @ from the channel walls to the liquid sodium

g = 160,000 kcall/mz-hr°C is shown on figure 4. As we see, the maximum value

of temperature, as was to be expected, occurs on the edges, where the most

intensive heat exchange between the gas and the wall occurs. At the back edge, /268
the temperature maximum is 899°C; at the front edge the maximum value is

850°C (lower than at the back edge, in spite of the higher value of @ in this

area, due to the proximity of the cooling channel). In the central portion
of the blade, the temperature is 550-650°C. The temperature of the cooling
channel walls, due to the high heat transfer coefficient from walls to sodium,
does not exceed the temperature of the sodium by more than 10°C in the central
portion of the profile and 30°C in the end channels.

! This value of oy, Was produced by calculation using the Leighill formula:

Nu = 0.0192 (GrPr)O'4.
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The results of
calculations for the
concrete conditions
indicate possible
directions for changes in
the location and
configuration of cooling
channels in order to
produce a more even
temperature field.

In order to check
the accuracy of the
method of calculation
suggested and to improve
the final program, the
problem was modeled using
a type EGDA-6/53 electro-
thermal analog devicel.

During the modeling,
the condition of simil-

arity between the electrical and thermal problems was maintained, as expressed

by the relationship

1 The solution of the problem on the electrothermal analog device was performed
by L. S. Petukhov. The installation and model are described in detail in work

[3].




S =1 and = |, (8)
CxCrC; Cal; .

Q q t A
c ===—ts¢c_ == = =
q I I T u CA g

. a

¢ = orig ; ¢, = T

model ReFe

The distribution of the local heat transfer coefficient over the contour
of the blade was modeled by electrical conductivities Si = l/Re Fe , where Re
i 71 i
was calculated according to the formula Re = ca(l/aiFe ) and was connected
i .
up using buses to the corresponding sectors on the contour of the electrical

model. In all, 40 such buses were located about the contour of the blade
profile.

The desired field of isotherms in the cross-section of the original blade
was determined after conversion of the field of distribution of electrical
potentials prooduced on the model using the formula T = ey, where coefficient

Cp was determined using relationship (8) according to the coefficients cq, C,

and Cr> which had been determined in advance.

The results of these calculations for the particular example shown on
figure 4 are illustrated on this same figure by the dotted lines. As we see,
the data agree well with each other, which indicates that the program is well
composed and that the suggested method of calculation is satisfactory. Thus,
we can say that this suggested method of calculation, programmed for electronic
computer, allows us to perform calculations of temperature fields in a flat
cross-section of a blade with any number of internal cooling channels with an
accuracy no less than the accuracy of the electrical integrator, but in a
considerably shorter period of time, with no need for the preparation of an
electrical model. It is also possible to perform rapid computational investi-
gation of a series of variants. This factor allows a large number of variant
calculations to be performed, as are necessary in design development of a blade
cooling system, in a comparatively short period of time.
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